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Abstract. Within a two-band tight-binding model, we investigate the dynamics of electrons on
which a stochastic external electric field is imposed. We find that the external noise may destroy
the Zener resonance, the Bloch oscillation, and the miniband localization. The destruction of the
Zener resonance due to the noise is much easier than that of the Bloch oscillations.

1. Introduction

In ordinary bulk materials, subjected to accessible electric fields, the Bloch oscillations (BOs)
[1] cannot be observed, because scattering typically disrupts the coherent motion of electrons
on a timescale which is much shorter than the Bloch period under practical conditions. Thus,
for a long time the prediction of BOs could not be verified. However, the emergence of
semiconductor superlattices brings about a dramatic change of the conditions, because a semi-
conductor superlattice has a larger lattice constant (d) and correspondingly small Bloch period
(TB). Recently, experimental advances have been made in the systems of semiconductor super-
lattices; these include the observation [2] of Bloch oscillations and studies of photon-assisted
transport [3–5]. These experimental results have not only given verifications of the classic
predictions of Bloch and Zener [6], but also opened up a new interesting field for theoretical
and experimental work.

On the theoretical side, a great deal of interest [7–22] has been shown in the influence
of external electric fields on semiconductor superlattices. Many new phenomena have been
predicted/explained theoretically, such as negative differential conductivity [14, 15], dynamic
localization [16–20], band collapse [7, 21, 22], band suppression [10], and fractional Wannier–
Stark ladders [8]. The simplest model to use when investigating semiconductor superlattices
involves just a single miniband; this can explain/predict a lot of new phenomena, but misses
all of the interesting interband effects. Thus, a two-band tight-binding model [23] is used
for theoretically investigating semiconductor superlattices. This model contains the essential
physics of interband transitions, and can be compared in practice with realistic situations
[24–26] where only a single pair of bands is important.

Rotvig, Jauho, and Smith (RJS) [27, 28] have studied the coherent transport of one-
dimensional semiconductor superlattices under the action of an electric field within this model.
They found that the coherent oscillation between the minibands can occur at special values of
the applied static electric field, where there are avoided crossings of the two interpenetrating
Wannier–Stark ladders (WSL) arising from different bands. These are the so-called Zener
resonances. For electric field values between the Zener resonances there are stable plateaus,
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where the relative population of the two bands is only weakly dependent on time. In each
plateau there are small-amplitude oscillations. The lifetime of a plateau is equal to the Bloch
period. On the other hand, they found that the Zener resonances are sensitive to the superlattice
parameters and the external electric field, and a system of Zener resonances can be changed
into a system of miniband localization by adjusting the value of the external field.

Using the same model, Zhaoet al [29] investigated the dynamics of electrons with
Markovian dephasing under the influence of static fields and the effects of scattering from
lattice imperfections, using a stochastic Liouville equation for the density matrix. The results
showed that the dephasing ultimately takes electrons that are initially located in one miniband
to equal population of the two minibands, instead of them undergoing persistent Rabi flop, as
they do in the absence of scattering.

In practice, since the external field may have a fluctuation component, the effect of external
noise should also be considered. In this work, using the same model, we study the dynamics
of electrons when the external field has a fluctuating component. As a versatile choice for the
noise, we will use an Ornstein–Uhlenbeck (OU) process [30]. This will permit an investigation
of the role of the strength of the noise and the size of the correlation time of the noise on the
time evolution of the population between two minibands. By means of numerical calculations,
we can obtain the time evolution ofρ−(k, t), which is the difference in electron population of
the two minibands in the quasimomentum space. We find that both BOs and Zener resonances
at avoided crossings may be destroyed by the external noise, and that the destruction of the
Zener resonances occurs much more readily than that of BOs. Therefore for a two-band system
with external noise perturbation, the observation of BOs should be easier than that of the Zener
resonances.

2. Model and method

We use the standard tight-binding model of a two-band system in an electronic fieldE(t). The
model Hamiltonian [23] can be written as

H(t) =
∑
n

[(1a + neE(t)d)a+
nan + (1b + neE(t)d)b+

nbn

− (Wa/4)(a
+
n+1an + h.c.) + (Wb/4)(b

+
n+1bn + h.c.) + eE(t)R(a+

nbn + b+
nan)].

(1)

Here the integern labels the lattice sites and the operatorsa andb refer to electrons in
the lower and upper minibands, respectively. The first two terms describe the site energies of
the Wannier states in the presence of the electric field, andWa,b are the widths of the isolated
(E = 0) minibands induced by the nearest-neighbour hopping:

εa,b(k) = 1a,b ∓ (Wa,b) cos(kd)

whered is the lattice constant. The last term is the on-site electric dipole coupling between
minibands;eR is the corresponding dipole moment. This Hamiltonian does neglect Coulomb
interactions and electric dipole elements between Wannier states on different sites, but it
contains the essential physics of the problem [23, 25, 27, 28].

When we apply a static electric fieldE0 to the system, there will be a stochastic component
F(t) fluctuating aroundE0 due to the circuitry thermal fluctuations. Therefore, the total electric
fieldE(t) contains two components, the stochastic partF(t) and the static partE0, i.e.,

E(t) = E0 + F(t). (2)

The magnitude of the noiseF(t) is usually of the order of ten per cent ofE0, which can be
estimated as follows.
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Consider a semiconductor superlattice of lengthl, average dielectric constantε, and area
S that is shunted by an external measuring device of resistanceRd [31], and a dc voltage
U0 (=−lE0) that is imposed on the system by one constant-current source. Due to the circuitry
thermal fluctuations, we have a Langevin equation for this resistively shunted semiconductor
superlattice:

C
dU(t)

dt
+
U(t)

Rd
= I0 + In(t) (3)

where U(t) = U0 + U ′(t), U ′(t) is the thermal fluctuation voltage across the semiconductor
superlattice,In(t) is the thermal fluctuation current, andC = εS/l is effective capacitance of
the semiconductor superlattice. SinceI0 = U0/Rd , equation (3) turns out to be

dU ′(t)
dt

+
U ′(t)
CRd

= In(t)

C
. (4)

TheIn(t) can be taken as white noise, i.e.

〈In(t)〉 = 0 〈In(t1)In(t2)〉 = 2R−1
d kBT δ(t1− t2)

wherekB is the Boltzmann constant andT is the lattice temperature. Thus, considering that
the strength of the electric field fluctuationsF(t) = −U ′(t)/ l, and using the method of
reference [32], we can obtain the electric field correlation function

〈F(t1)F (t2)〉 = kBT

Cl2
e−|t2−t1|/RdC (5)

which is equivalent to an OU process [33] whereby the noiseF(t) has zero average value and
the correlation function

〈F(t)F (s)〉 = 12 exp(−|t − s|/τc). (6)

Here we have introducedτc = RdC and

1 =
(
kBT

Cl2

)1/2

=
(
kBT

εVs

)1/2

whereVs is the volume of the semiconductor superlattice. From this result we find that when
Vs is approximately of the order ofµm3, 1 is approximately of the order of 104 V m−1 at
T = 300 K. This leads to1/E0 ∼ 0.1, for a typical order ofE0. As we will see in the
following, this order will result in there being significant changes in the dynamic behaviour of
the Zener tunnelling and Bloch oscillations.

Now we define the density matrix in the two-band representation:

ρ(t) =
∑
ijmn

ρijmnξ
i†
m ξ

j
n (7)

wherei, j = 1 or 2 are band indices, andξ1†
m (ξ1

m) andξ2†
m (ξ2

m) designatea†
m (am) andb†

m (bm),
respectively. The density matrixρ(t) satisfies the following Liouville equation (LE) (we set
h̄ = 1 throughout this paper):

i
∂ρ

∂t
= [H, ρ(t)]. (8)

Since we are interested in the dynamics of occupation of various band states, it is convenient
to work in a wave-vector basis, by Fourier transforming the density matrix. In general, since
ρm,n is not translationally invariant (a function only ofm− n), we have a full set

ρ
ij

kq =
∑
mn

ρijmn(t) exp(−ikm + iqn)
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of Fourier components. But we will be interested in the wave-vector diagonal band occupation
numbersρijkk ≡ ρij (k, t). These evolve according to the corresponding Fourier transform of
the LE:

i
∂

∂t
ρ11(k, t) = iedE(t)

∂

∂k
ρ11(k, t)− eE(t)R(ρ12(k, t)− ρ21(k, t)) (9)

i
∂

∂t
ρ22(k, t) = iedE(t)

∂

∂k
ρ22(k, t) + eE(t)R(ρ12(k, t)− ρ21(k, t)) (10)

i
∂

∂t
ρ12(k, t) = iedE(t)

∂

∂k
ρ12(k, t)− eE(t)R(ρ11(k, t)− ρ22(k, t))

+ (1ab −W cosk)ρ12(k, t) (11)

i
∂

∂t
ρ21(k, t) = iedE(t)

∂

∂k
ρ21(k, t) + eE(t)R(ρ11(k, t)− ρ22(k, t))

− (1ab −W cosk)ρ21(k, t) (12)

where we have adopted the notation1ab ≡ 1a −1b andW = (Wa +Wb)/2. By introducing
[29]

ρ+(k, t) = ρ11(k, t) + ρ22(k, t)

ρ−(k, t) = ρ11(k, t)− ρ22(k, t)

ρ+−(k, t) = ρ12(k, t) + ρ21(k, t)

ρ−+(k, t) = i[ρ21(k, t)− ρ12(k, t)]

we obtain
∂

∂t
ρ+(k, t)− edE(t) ∂

∂k
ρ+(k, t) = 0 (13)

∂

∂t
ρ−(k, t)− edE(t) ∂

∂k
ρ−(k, t) = −2eE(t)Rρ−+(k, t) (14)

∂

∂t
ρ+−(k, t)− edE(t) ∂

∂k
ρ+−(k, t) = (1ab −W cosk)ρ−+(k, t) (15)

∂

∂t
ρ−+(k, t)− edE(t) ∂

∂k
ρ−+(k, t) = −(1ab −W cosk)ρ+−(k, t) + 2eE(t)Rρ−(k, t). (16)

The equation forρ+(k, t) describes particle conservation. It is decoupled from the others,
and we will ignore it in the following discussion. The equations forρ−(k, t), ρ+−(k, t), and
ρ−+(k, t) can be reduced to the following ordinary differential equations in an accelerated basis
[34], k(t) = k − A(t), where

A(t) ≡
∫ t

0
edE(t) dt.

For the case of the external electric field equation (2), and terms of dimensionless variables
t ′ = edE0t ≡ ωBt (we do not indicate the prime, for notational convenience), we obtain

d

dt
X(k, t) = −2

R

d
[1 + v(t)]z(k, t) (17)

d

dt
Y (k, t) =

{
1ab

ωB
− W

ωB
cos

[
k − t −

∫ t

0
v(t) dt

]}
Z(k, t) (18)

d

dt
Z(k, t) = −

{
1ab

ωB
− W

ωB
cos

[
k − t −

∫ t

0
v(t) dt

]}
Y (k, t) + 2

R

d
[1 + v(t)]X(k, t). (19)
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Here,

X(k, t) = ρ−(k − A(t), t)
Y (k, t) = ρ+−(k − A(t), t)
Z(k, t) = ρ−+(k − A(t), t).

ωB = edE0, andv(t) = F(t)/E0 is the OU process with correlation

〈v(t)v(s)〉 = (D/ωB)2e−|t−s|/ωBτc (20)

whereD = ed1.
These stochastic equations of motion, equations (17)–(19) and (20), can be solved

numerically by generating trajectories for the different realizations of the noise. In the absence
of any scheme for solving these equations analytically, we turn in the following section to
numerical solutions. The procedure for integrating the stochastic equations is as follows. A
Runge–Kutta integrator is used to advance the solution of equations (17)–(19) for each time
step, and the accompanying initial conditions areX(k, 0) = 1,Y (k, 0) = 0, andZ(k, 0) = 0.
A stochastic term is added at each step with its statistical properties described by an OU process.
The OU process is generated by solving a Langevin equation with a delta-correlated noise term.
This will ensure that the correlation function ofF(t) or v(t) has the desired statistical property
given by equation (6) or equation (20). The procedure is carried out for a sufficiently large
number of trajectories to yield the desired average behaviour. The details of the method can
be seen in the appendix of reference [33].

3. Results and discussion

Before displaying our calculation results we give a brief review of RJS’s main results from
reference [27].

(i) The Zener resonances. For certain field valuesE0 ≈ 1ab/edn, wheren is an integer,
the two Stark ladders are very close to each other, forming avoided crossings, and in the
corresponding neighbourhoods a strongly enhanced band-to-band transfer takes place.
The time dependence of the relative population of the two bands (for a fixedk) oscillates
between +1 and−1, and a set of stable plateaus form. The Zener resonances can be
indexed withn, and the number of oscillations on a given plateau is equal ton.

(ii) Miniband localizations. When the field values are adjusted far away from the avoided
crossings, the Zener resonances will be quenched.

The above picture is valid when the external field is a steady static one, while in practice it
may have a fluctuating component. Hence, a natural question arises: what will happen when
the noise field is taken into account? To answer this question, we will investigate the influence
of the noise onX(k, t) in three cases in this section, in which the part of the static electric
field is chosen to be the value corresponding to the eighth Zener resonance, the second Zener
resonance, and the miniband localization [27], respectively. The time dependence ofX(k, t)

is obtained from equations (17)–(19) and equation (20) by numerical integration.
Figure 1 shows the time dependencies ofX(k = 0, t) in the absence of noise and in the

case of weak noise withD/ωB = 0.05 andωBτc = 0.1. There, the superlattice parameters
W = (Wa +Wb)/2 = 18 meV,1ab = 1a − 1b = 20 meV,R/d = 0.9, and the static part
of the electric fieldωB = eE0d = 2.32 meV are chosen to be at an avoided crossing of the
interpenetrating WSL. The static part of the electric field is that corresponding to the eighth
Zener resonance. In the absence of noise,X(k = 0, t) oscillates between +1 and−1 with
a period approximately determined by a value given in reference [26]. A distinctive set of
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Figure 1. X(k = 0, t) as a function of dimensionless timeωBt with and without external noise.
W = (Wa + Wb)/2 = 18 meV,1ab = 1a − 1b = 20 meV,R/d = 0.9, ωB = 2.32 meV,
D/ωB = 0.05, andωBτc = 0.1. The solid line corresponds to the case of weak noise, and the
dotted line to the case without external noise.

stable plateaus have developed, and the transitions between the plateaus occur at the instants
t = 1

2TB , 3
2TB , 5

2TB , . . . (TB = 2π/ωB). Thus, the lifetime of a plateau is (approximately)
equal to the Bloch period, and transitions occur every time ak-point reaches the Brillouin
zone edge, where the energy separation between the minibands is at a minimum. The number
of small oscillations on a given plateau is equal to eight, meaning that in a period of Bloch
oscillations there are eight periods of the small-amplitude oscillations. In the case of weak
noise,X(k = 0, t) still oscillates between negative and positive values, but the oscillation
amplitude decreases strikingly with increasing time. The peaks of the transitions between
the plateaus almost occur at the same time position as in the absence of noise. With the
time increasing, the small oscillations on the plateaus become very weak, but the peaks of the
transitions can still be identified. From figure 1 one can see that the transition of electrons from
one miniband to the other miniband is mainly attributable to the Zener tunnelling at the zone
edges, and that electrons can last for a few Zener tunnelling periods before they are scattered.

When the strength of the noise increases toD/ωB = 0.2, we find that the Zener resonance
is suppressed heavily as shown in figure 2, whereX(k = 0, t) remains positive throughout the
whole driving process. The plateaus can still be identified in earlier peaks of the envelopes, and
the transitions between the plateaus can still be seen obviously about att = 1

2TB , 3
2TB , 5

2TB , . . .,
but the small oscillations on the plateaus almost disappear.X(k = 0, t) on every plateau is
only weakly dependent on time. From figure 2 one can see that electrons can last for several
periods of the BOs, but the electrons cannot last for a period of Zener resonances before they
are scattered by the noise. For the case of strong noise (D/ωB = 1.0, ωBτc = 1.0), we find
that not only the Zener oscillation but also the plateaus are destroyed almost completely, as
shown in figure 3.X(k = 0, t) decays almost exponentially to zero with increasing time,
implying that the electron density will be distributed equally between the two minibands. In
that case the electron cannot last for a period of BOs before it is scattered by the noise.
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Figure 2. X(k = 0, t) with external noise as in figure 1, but forD/ωB = 0.2.

Figure 3. X(k = 0, t) with external noise as in figure 1, but forD/ωB = 1.0 andωBτc = 1.0.

Figure 4 shows the time dependencies ofX(k = 0, t) in the absence of noise and for
the case of weak noise withD/ωB = 0.1, ωBτc = 0.1, where the superlattice parameters
W = 8.6 meV, 1ab = 20 meV,R/d = 0.18, and the static part of the electric field
ωB = 10.2 meV are chosen to be at an avoided crossing of the interpenetrating WSL. The static
part of the electric field in this case is that corresponding to the second Zener resonance. In the
absence of noise,X(k = 0, t) oscillates between +1 and−1; one can distinguish two periods
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Figure 4. X(k = 0, t) as a function of dimensionless timeωBt with and without external noise.
W = 8.6 meV,1ab = 20 meV,R/d = 0.18,ωB = 10.2 meV,D/ωB = 0.1, andωBτc = 0.1. The
solid line corresponds to the case of weak noise, and the dotted line to the case without external
noise.

of oscillations in any of the plateaus (even though the plateaus are not very clearly resolved
for this particular set of parameters). In the case of weak noise,X(k = 0, t) still oscillates
between negative and positive values, and the oscillation amplitude decreases strikingly with
increasing time. The oscillations on the plateaus can be identified in several earlier plateaus,
and their oscillation amplitude decreases with increasing time. When the strength of the
noise increases toD/ωB = 0.3 as shown in figure 5, the Zener resonances are destroyed
completely, provided thatX(k = 0, t) remains positive throughout the whole driving process.
The oscillations on plateaus which include two periods of the oscillation can still be identified
in earlier plateaus, but their amplitudes decrease with increasing time. For the case of strong
noise (D/ωB = 1.0, ωBτc = 1.0), not only the Zener oscillations but also the plateaus are
destroyed almost completely as shown in figure 6.

Figure 7 shows the time dependencies ofX(k = 0, t) in the absence of noise and for the
case of strong noise withD/ωB = 1.0, ωBτc = 1.0, where the superlattice parameters are
chosen to be the same as those for figure 4, but the static part of the electric field is chosen to
be well away from the avoided crossings. In the absence of noise, the electrons are localized
in one of the minibands. In the case of strong noise, the miniband localization is destroyed
completely, provided thatX(k = 0, t) decays almost exponentially to zero with increasing
time.

From the above results, we can see that the external noise can destroy not only the Zener
resonances, but also the BOs (the plateaus are the traces of BOs in the two-band model). The
strength of the noise required to destroy the Zener resonance is much less than that required to
destroy the BOs. This will be manifested through comparing the strength of the noise relative
to the Zener resonance frequency with that relative to the BO frequency. Since the Bloch
frequencyωB is much larger than the Zener resonance frequency�Z, for a given strength of
the noiseD,D/�Z is much larger thanD/ωB . Thus, the destruction of the Zener resonances
is much easier than that of the BOs.
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Figure 5. X(k = 0, t) with external noise as in figure 4, but forD/ωB = 0.3.

Figure 6. X(k = 0, t) with external noise as in figure 4, but withD/ωB = 1.0 andωBτc = 1.0.

The problem that we study in this paper is an infinite one-dimensional model. As is well
known, there is some subtlety in this problem because the system is unstable due to the external
electric field [35]. A rigorous mathematical theorem [36, 37] has already shown this point.
However, if we only consider groups of finite numbers of bands (theN -band approximation),
the system becomes stable [34]. Physically speaking, it is enough to consider finite numbers
of bands for practical situations. Therefore, our results obtained in this paper, which are based
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Figure 7. X(k = 0, t) as a function of dimensionless timeωBt with and without external noise.
W = 8.6 meV,1ab = 20 meV,R/d = 0.18,ωB = 9 meV,D/ωB = 1.0, andωBτc = 1.0. The
solid line corresponds to the case of strong noise, and the dotted line to the case without external
noise.

on the standard tight-binding two-band model [23], will have potential application to quantum
physics.

In summary, we have studied the problem of transport properties of two-band superlattices
under the influence of an external electric field. The characteristic of our model is that we have
introduced a stochastic part of the field via an OU process to describe the effect of external
noise. We found that

(i) When the strength of noise is weak, the Zener tunnelling and the BOs can be displayed
by the oscillations between negative and positive values; nevertheless their amplitudes
decrease with increasing time.

(ii) When the strength of the noise increases to a certain value, the BOs are still displayed by
the plateaus ofX(k, t), but the Zener resonances are suppressed heavily.

(iii) When the strength of the noise is strong, not only the Zener resonances but also the BOs
will be destroyed completely.

(iv) The miniband localization can also be destroyed by the noise.

Considering these observations, in order to observe the Zener tunnelling oscillatory behaviour,
one should produce a stable electric field which has the smallest possible stochastic component.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under
Grant No 19725417, the National PAN-DENG Project under Grant No 95-YU-41, and a grant
of the China Academy of Engineering and Physics.



Zener tunnelling and Bloch oscillations 7269

References

[1] Bloch F 1929Z. Phys.52555
[2] Waschke C, Roskos H G, Schwedler R, Leo K, Kurz H and Köhler K 1993Phys. Rev. Lett.703318
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